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To evaluate the potential utility of metabolite-associated 
loci applied in hybrid maize breeding, we assembled two 
groups of hybrid entries with high or low drought tolerance 
and measured the metabolic and physiological traits. In the 
hybrid pools, a set of 10 metabolite-associated loci identi-
fied in leaf and ear were validated as responsive to drought 
stress. The favorable alleles of these ten loci were signifi-
cantly enriched in hybrids with high drought tolerance, 
which jointly explained almost 18.4 % of the variation 
in drought tolerance using a multivariate logistic regres-
sion model. These results provide clues to understanding 
the genetic basis of metabolic and physiological changes 
related to drought tolerance, potentially facilitating the 
genetic improvement of varieties with high drought toler-
ance in maize breeding programs.

Introduction

Maize (Zea mays L.) is one of the most important crops 
worldwide for food, animal feed and biofuel, and displays 
the highest global grain production (Haley 2011). Drought 
(i.e., water deficit) is one of the most serious abiotic 
stresses of plant development and greatly reduces crop pro-
duction. In maize, drought stress during flowering causes 
an asynchrony between silk emergence and pollen shed-
ding, which increases the anthesis-silking interval (ASI) 
and leads to significant yield losses (Lu et al. 2010; Ribaut 
et al. 1996).

Drought tolerance (DT) is a complex trait which refers 
to the capacity of the plant to be more productive under 
drought stress (Ribaut et al. 2009). Improvement of drought 
tolerance of released cultivars is critically important to sus-
tain grain yield in the face of continually degrading global 
environments. The clear exploration of the genetic basis of 
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drought tolerance will speed genetic improvement of maize 
varieties for drought tolerance; however, it has been very 
difficult to identify any genes with a measurable effect 
on drought tolerance in maize. There are several interact-
ing metabolic traits that vary in response to water stress 
(WS), and this may contribute to the sensitivity of this trait 
to even small environmental or climate changes (Paupière 
et al. 2014; Tuteja and Gill 2013).

In WS, drought sustained during flowering and early 
kernel development leads to many detrimental changes in 
plant physiology and development, including delayed days 
to silk emergence and increased anthesis-silking interval 
(Xue et al. 2013), stomatal closure, plant wilting and leaf 
rolling, and premature senescence of leaves and hence, a 
reduction in the leaf area index and a fall in photosynthetic 
activity, all of which cause yield reduction (Ribaut et al. 
2009). The phytohormone abscisic acid (ABA) is an impor-
tant plant metabolite that plays an essential role in drought 
response, and increased production of ABA would help the 
plants to survive under drought stress (Seki et al. 2007). 
This includes regulation of stomatal aperture and transcrip-
tion levels of a large number of genes related to plant stress 
response (Pinheiro and Chaves 2011). Primary metabolites, 
such as sugars and amino acids, have also been reported to 
accumulate during WS (Bartels and Sunkar 2005). Sugar 
and amino acid levels are significantly correlated with 
drought tolerance (Lebreton et al. 1995; Mohammadkhani 
and Heidari 2008), so they could potentially be used as 
drought tolerance component traits to assist in the selec-
tion of elite inbred lines with drought tolerance in maize 
breeding.

Due to a complex genetic architecture, the study of 
drought tolerance in maize is difficult, and a good alterna-
tive is to study metabolic traits that vary with drought levels 
to unravel the genetic basis of this tolerance. In plant spe-
cies, genome-wide association study (GWAS) has emerged 
as a powerful tool to identify QTLs and natural variation 
for many agriculturally important traits (Atwell et al. 2010; 
Buckler et al. 2009; Huang et al. 2010). With the advent 
of high-efficiency metabolic profiling and next-generation 
sequencing technologies, there have been many reports of 
GWAS that dissect the genetic basis of primary metabolites 
in multiple species (Chen et al. 2014; Luo 2015; Wen et al. 
2014, 2015). This is mainly because the plant metabolome 
is the readout of plant physiological status and often acts 
as the intermediary connecting the visible agronomic phe-
nome and the underlying genome, thus allowing identifica-
tion and, ultimately, selection of causative genetic loci that 
are less influenced by the environment (Chan et al. 2010; 
Keurentjes et al. 2006; Meyer et al. 2007; Riedelsheimer 
et al. 2012).

Nevertheless, little is known about metabolic response 
to drought. In maize, Setter et al. (2011) employed the 

Illumina GoldenGate SNP array with 1229 informative 
SNPs to perform GWAS of metabolite levels under WS, 
and identified several significant loci and candidate genes. 
However, marker density in the study by Setter et al. (2011) 
was insufficient for total genomic coverage, and the genetic 
basis of varying metabolic and physiological traits under 
water deficit in maize remains unclear. The extent of link-
age disequilibrium in specific populations generally deter-
mines the number of markers required to saturate the whole 
genome, and simulation and empirical studies suggest that 
hundreds of thousands of markers are needed in maize to 
have the statistical power to identify the majority of QTLs 
associated with complex traits via GWAS (Li et al. 2013; 
Yan et al. 2011; Yang et al. 2014). It is thus likely that re-
analysis of the previous study by Setter et al. (2011) with 
an enlarged panel of markers will allow further dissection 
of the genetic basis of metabolic and physiological traits in 
response to drought.

To this aim, we made use of the metabolic and physi-
ological traits of the 318 diverse maize inbred lines used 
by Setter et al. (2011) and enlarged the 1229 SNPs to 
156,599 SNPs by integrating three genotype datasets gen-
erated from the GoldenGate array, the MaizeSNP50 array 
and RNA-sequencing, using efficient imputation methods. 
To evaluate the practical utility of results of this expanded 
GWAS, we assembled two groups of maize hybrids with 
high or low drought tolerance and measured the metabolic 
and physiological traits using the same procedures as in 
the GWAS study. The objectives of this study were: (i) to 
assess the feasibility of enhancing SNP coverage via impu-
tation methods; (ii) to further dissect the genetic basis of 
metabolic and physiological response to drought in maize; 
(iii) to evaluate the potential use of significantly associ-
ated loci in an applied hybrid breeding program to increase 
drought tolerance.

Materials and methods

Plant materials and field trials

An association mapping panel of 318 diverse maize inbred 
lines with tropical and subtropical pedigrees was employed 
to perform GWAS in this study (Table S1). All materials 
were planted at CIMMYT’s experimental station in Tlalti-
zapan, Mexico following an alpha lattice design in 2005 
and 2006, termed TL05A and TL06A, respectively. Field 
trials were severe drought stress (WS) in TL05A and 
planted under contrasting irrigated conditions including 
fully irrigated (well watered, or WW) and WS in TL06A. 
The WW trials were irrigated every 2 weeks by furrow 
irrigation. The WS trials were also irrigated every 2 weeks 
until 20 days before anthesis, when water was withdrawn; 
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detailed information for the field management and trials 
was described previously (Setter et al. 2011).

Also, the set of 318 inbred lines of the association map-
ping panel were crossed with a common tester, CML312, 
an inbred line with a good general combining ability and 
poor drought tolerance. In the 2006–2007 season, the 
testcross population was planted in WS and WW condi-
tions in Kenya (KARI, Kiboko), Thailand (Takfa, Nakhon 
Sawan), and Mexico (CIMMYT, Tlaltizapan) in an alpha 
lattice design with two replications and 5-m rows per 
plot, to measure agronomic traits (Xue et al. 2013). In this 
study, grain yield and ASI measured in the hybrid popula-
tion in each of the three environments in the WS condition 
were used to obtain global rank indices for evaluating the 
drought tolerance of the hybrids.

For each environment, the rank index for each hybrid 
was calculated as:

where the Z-score means the normalized data of each 
hybrid for yield and ASI, respectively, in each environ-
ment. Given that a higher ASI is negatively associated 
with drought performance, this subtraction of Z-score gave 
approximately equal weight to yield and ASI. Z-scores for 
yield and ASI were calculated by the formula:

where hybrid was the yield or ASI value of a particular 
hybrid, and the mean and standard deviation (SD) were cal-
culated across the hybrid population for each environment 
trial. To obtain a global ranking of each hybrid, the rank 
indices for the three environments were averaged (Table 
S2). According to the distribution of the global rank indices 
and the drought tolerance in the field, two tails of this dis-
tribution with 71 highly tolerant and 68 intolerant hybrids 
were selected to form two contrasting groups, referred to 
hereafter as the hybrid pools (Table S2). Experimental flow 
of this study was shown in Figure S1.

Analysis of metabolic and physiological traits

In this study, analysis of metabolic and physiological 
traits was conducted on both the association panel and two 
hybrid pools. For the association panel, metabolic traits 
including abscisic acid (ABA), abscisic acid glucose ester 
(ABA-GE), phaseic acid (Pa), proline (Pro), sucrose (Suc), 
glucose (Glc), total sugars (Tsug), mole fraction of sucrose 
per total sugar (Fsuc), mole fraction of glucose per total 
sugar (%glc), starch (Str), and physiological traits includ-
ing dry mass (Dw) and specific leaf weight (Slw), were 
previously measured in multiple tissues under WS and WW 
conditions at 0 and 7 days after anthesis in two consecutive 
years (Setter et al. 2011). These same phenotypic data were 

rank-index =

(

Z-scoreyield − Z-scoreASI
)

.

Z-score = (hybrid − mean)/SD,

directly used in the current analysis. For the hybrid pools, 
two tissues (i.e., ear and leaf) were sampled for analysis of 
metabolic and physiological traits on plants grown under 
WS and WW conditions at 7 days after anthesis in 2008. 
Ear tips were sampled in Thailand and Mexico, while leaf 
disks were collected in Kenya, Thailand and Mexico. The 
same metabolic and physiological traits described above 
were measured with the same protocol documented previ-
ously (Setter et al. 2011).

For the current analysis, we treated the combination of 
each tissue [E (ear), L (leaf) and S (silk)], metabolic and 
physiological trait, sample time (0 and 7 days), irrigated 
condition (WW and WS), and year (2005 and 2006) as 
individual variables to facilitate GWAS analysis. For exam-
ple, E.Str.0_WW_06 indicates the variable starch content 
measured in the ear sampled at 0 days after anthesis under 
WW condition in 2006. In total, we obtained 168 variables 
for all twelve metabolic and physiological traits in the asso-
ciation panel of 318 inbred lines and 85 variables in the 
hybrid pools. The abbreviated name and description of all 
traits measured are listed in Table S3.

Genotyping and imputation

The association panel’s 318 inbred lines were previously 
genotyped by two SNP chips: the Illumina GoldenGate 
Assay with 1536 SNPs chosen from drought-related genes 
(Setter et al. 2011) and the Illumina MaizeSNP50 BeadChip 
with 56,110 random SNPs as described previously (Xue 
et al. 2013). A very large number of imputed SNPs were 
added to these directly scored SNPs as described below to 
generate enough SNP calls to completely cover the maize 
genome with a sufficiently high density for GWAS. To 
do this, we used the SNP calls from another panel of 368 
diverse maize inbred lines, which had been genotyped by 
the Illumina MaizeSNP50 BeadChip (Li et al. 2012b) and 
with 556,809 high-quality SNPs (MAF ≥ 0.05) by RNA-
sequencing (Fu et al. 2013; Li et al. 2013). In the present 
study, we imputed the high-density marker genotypes for 
318 inbred lines using the data from the 368 inbred lines, 
following a two-step approach using the identity by descent 
(IBD)-based projection and k-nearest neighbor (KNN) 
algorithm reported previously (Yang et al. 2014).

According to the physical position of each SNP on the 
B73 reference sequence (RefGen_v2), we merged the 
three marker datasets (i.e., 1536 SNPs from the Golden-
Gate array, 56,110 SNPs from the MaizeSNP50 array and 
556,809 SNPs from RNA-seq) into an integrated marker 
dataset with a total of 558,629 SNPs. There were 39 inbred 
lines in common between the 368 and 318 line panels, 
and 329 inbred lines with RNA-seq data were regarded 
as the reference panel to impute the genotyped panel of 
318 inbred lines, which provided an access to evaluate 
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imputation accuracy in the current study. For each of the 
318 lines (those with no RNA-seq data), including the 
repeated 39 lines, the genotype calls from 42,742 SNPs 
which were shared between the two panels were used as 
core markers and projected onto physical maps of the maize 
genome. IBD regions were delimited on these maps, and 
within each IBD region, the genotypes for each of the 318 
lines were assigned as the alleles from the RNA-seq data 
of the best matched line of the 329 line panel. Imputed val-
ues were then inserted for each SNP. The imputed values of 
the 39 inbred lines were compared with the observed val-
ues to calculate imputation accuracy; but only the observed 
values for these 39 lines were used in the GWAS analysis. 
Imputation resulted in a total of 156,599 high-density SNPs 
(MAF ≥ 0.05) available in the 318 inbred lines for GWAS.

GWAS

GWAS of the 168 variables in the 318 maize inbred lines 
was performed using a compressed mixed linear model 
(cMLM) (Zhang et al. 2010) implemented in the soft-
ware package GAPIT (Lipka et al. 2012). In GAPIT, the 
top six principal components and a kinship matrix were 
used to correct for population structure and family relat-
edness among the 318 inbred lines in GWAS, which were 
calculated automatically with 44,314 SNPs from the 50 K 
array by setting the parameters “pca.total” as 6 and “kin-
ship.algorithm” as “Loiselle” (Loiselle et al. 1995). Male 
flowering time (which is the only available flowering time-
related trait in the association panel) was also used as a 
fixed effect (covariate) in the mixed model, since flower-
ing time strongly correlates with the performance of plants 
under drought stress.

The general decay distance of linkage disequilib-
rium (LD) in the association panel (~100 kb, Xue et al. 
2013) was used to compare the GWAS results based on 
the two marker datasets at the family-wise error rate of 
0.05. As the number of markers in the two datasets dif-
fered greatly, the effective number (Ne) of independent 
tests for the two datasets was calculated (Li et al. 2012a) 
and the value was used to determine the global p cutoff 
using the Bonferroni method for correcting multiple tests 
(P ≤ α/Ne) (Dunn 1959, 1961). To facilitate the interpreta-
tion of GWAS results, the adjusted Bonferroni method (i.e., 
P ≤ 1/N, where N is total number of genome-wide SNPs 
in the analysis) was used as the genome-wide p cutoff to 
declare the significance of SNP-trait associations, which 
is currently widely used in plant GWAS studies (Li et al. 
2013; Huang et al. 2010). Furthermore, we evaluated the 
extent of local LD for each significant SNP. The extended 
region where the LD between nearby SNPs and the peak 
SNP (that with the lowest P value) decayed to r2 = 0.2 
was defined as the local LD-based QTL interval. For each 

variable, all significant SNPs with overlapping QTL inter-
vals were categorized as an associated locus. For each 
associated locus, the p value and QTL intervals of the peak 
SNP defined the significance and the interval of the locus; 
the variance explained by the locus was estimated with in 
a general linear model (GLM) that fits the peak SNP in 
the “lm” function of the R software package, and which 
was calculated by comparing the residual sum of squares 
between the full model and the reduced model excluding 
the peak SNP. These significant QTL intervals were used 
to identify overlaps between the two water regimes and 
search for candidate genes. To test whether the metabolite-
associated loci responded to drought stress, we performed 
a two-way ANOVA to test the significance of interaction 
effect between locus and water status (WW and WS) for 
each significant locus. The set of loci showing significant 
interactions with water status were defined as QTL respon-
sive to drought stress (drought-response loci).

Performance of metabolic associations in the 
contrasting hybrid pools

To evaluate the potential utility of studying metabolic and 
physiological traits to hybrid maize breeding for drought 
tolerance, a t test was used to evaluate the difference of 
trait means between the hybrid pools. For these traits, the 
drought-response loci identified in GWAS were studied in 
an attempt to validate their effects on drought tolerance 
in the hybrid pools across the three environments. For 
each drought-response locus, the markers within the QTL 
interval were tested using a logistic regression model or 
a linear regression model that simultaneously fits the first 
principle component and MFLW in hybrid pools as covari-
ates. Each drought-response locus was validated if two or 
more markers within the QTL interval had a significant 
effect on drought tolerance in the hybrid pools (P < 0.05). 
To test whether there was an enrichment of validated loci 
in the hybrid pools, the observed proportion of validated 
SNPs for the drought-response loci was compared with the 
expected proportion, which was the proportion of random 
SNPs across the whole genome showing significant effect 
on drought tolerance in hybrid pools (P < 0.05). The sig-
nificance between the observed and expected proportions 
was estimated using the R function ‘binom.test’. The pro-
portion of the variance of drought tolerance captured by 
multiple loci was defined as the goodness of fit value that 
was estimated in a multivariate logistic regression model. 
The favorable allele of each significant locus was defined 
as the allele that was enriched in the high drought tolerance 
pool compared to the low drought tolerance pool, and the 
number of alleles in each hybrid entry was estimated. All 
statistical analyses were carried out using the software R 
package (R Core Team 2012).
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Results

Imputation for accurately increasing SNP density

In this study, we integrated two actual genotypic datasets 
(i.e., the GoldenGate and MaizeSNP50 array) collected 
on a GWAS panel of 318 lines with RNA-seq data from 
a different (but partially overlapping) population using 
the two-step imputation methods based on IBD and KNN 
algorithms to increase the number of SNPs available for 
GWAS from 1229 to 558,629. It is critically important to 
assess the accuracy of the imputed SNPs before using them 
in an analysis. To this aim, a principal component analysis 
(PCA) was performed to illustrate the relationship between 
the two panels (i.e., 318 and 368 lines) using the com-
mon SNP data of the 50 K SNP array. In Fig. 1a, it can be 
seen that the range of variation spanned by the 318 lines is 
almost completely covered by the range of the panel of 368 
lines. This indicates that the majority of the haplotypes pre-
sent in the panel of 318 lines should also exist in the panel 
of 368 lines, allowing imputation of missing haplotypes in 
the 318 lines from the SNP information from the 368 line 
panel.

Also, we compared the true RNA-seq genotype with 
the imputed genotype for the 558,629 SNPs in a subset 
of 39 inbred lines that appeared in common between the 
two panels. The imputation accuracy was robustly high 
for each inbred line, ranging from 95.84 to 99.98 % for 
the whole marker set and from 97.17 to 99.99 % for the 
subset of markers with MAF ≥ 0.05 (Fig. 1b and Figure 

S2A). Moreover, the 39 lines shared between the two 
genetic panels were largely representative of the entire 
range of genetic variation of the 318 lines (Fig. 1c); thus, 
the high imputation accuracy of the 39 lines is prob-
ably true for the panel of 318 lines as well. Imputation 
largely reduced the proportion of missing genotypes for 
each line in the 318 line panel, i.e., from 0.93 to 0.44 for 
the whole marker set and from 0.72 to 0.13 for the subset 
of markers with MAF ≥ 0.05 (Fig. 1d and Figure S2B), 
thus greatly increasing the available data for further sta-
tistical analysis. The results suggest that imputation can 
greatly increase marker coverage not only in the present 
study but also in similar situations, where similar genetic 
backgrounds and overlapping lines between two different 
panels allow such imputation and confirmation of accu-
racy (Fig. 1a, c).

GWAS with metabolic and physiological traits

A GWAS analysis of the 168 phenotypic variables for the 
metabolic and physiological traits was run again using the 
previously published GoldenGate SNP array (1229 SNPs 
with MAF ≥ 0.05 from Setter et al. 2011; hereafter called 
Dataset 1) and the new integrated SNP set (156,599 SNPs 
with MAF ≥ 0.05; hereafter called Dataset 2) with the 
compressed mixed linear model controlling the same set 
of population structure, male flowering time, and kinship. 
Because the mean LD decay across all chromosomes for 
this panel was ~100 kb (Xue et al. 2013), for simplicity, 
we defined 100 kb up- and downstream of the peak SNP 

Fig. 1  Quality statistics of 
imputed genotypes for filtered 
SNPs (MAF ≥ 0.05). a The 
top two axes of variation for 
368 inbred lines (green) and 
318 inbred lines (dark blue); 
b Imputed accuracy, estimated 
using the 39 shared inbred 
lines for filtered SNPs (156599 
SNPs; MAF ≥ 0.05); c PCA 
plot for 318 inbred lines (Light 
blue) and 39 shared inbred lines 
(dark blue); d Missing data rate. 
The colored bars and numbers 
represent the median missing 
data rate of 318 inbred lines 
before (red) and after (blue) 
imputation for filtered SNPs 
(156599 SNPs; MAF ≥ 0.05), 
respectively
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as a locus for testing whether the marker density influences 
GWAS results. At a family-wise error rate of 0.05, 11 sig-
nificant loci were detected (P ≤ 0.05/Ne, Ne = 952) for the 
168 variables in Dataset 1, whereas 17 significant loci were 
identified in Dataset 2 (P ≤ 0.05/Ne, Ne = 67607). Only 
one locus overlapped between the two Datasets. Addition-
ally, when a less stringent p cutoff (P ≤ 0.05/952, same as 
used in Dataset 1) was used in Dataset 2, a total of 524 sig-
nificant loci were identified including all the 11 significant 
loci detected in Dataset 1 (Fig. 2a). The larger number of 
associated loci in Dataset 2 rather than Dataset 1 was due 
to the loci for which no markers (or insufficient numbers of 
markers) exist in Dataset 1 (i.e., 494 loci with no markers; 
Fig. 2b, d and 30 loci with insufficient markers; Fig. 2c, d).

To explore the genetic basis of metabolic and physi-
ological trait variation under different water regimes, the 
extent of local LD was evaluated for each significant SNP 
identified by GWAS (P ≤ 1/156599; Figure S3). For the 
168 phenotypic variables, the 123 significant SNPs were 
categorized into 63 significant loci based on the local 
LD (Figure S4; Table 1). For each significant locus, the 
QTL interval ranged from 0.4 to 36 Mb with an average 
of 4.5 Mb (Table 1). The majority of significant loci was 
specifically detected in one water regime (i.e., 22 loci only 
in WW and 40 loci only in WS, and only one locus both 
in WW and WS, Table S4, Fig. 3). The percentage of phe-
notypic variation (R2) that each locus could explain ranged 

from 3.10 to 16.14 %, with a mean of 8.34 %; 14 loci were 
identified that explained greater than 10 % of the variation 
(R2 = 10.04–16.14 %). For ear tissue, GWAS detected a 
total of 23 significant loci, 8 specific to WW, in which R2 
ranged from 7 to 16.14 % with a mean of 10.17 %, and 
15 specific to WS, in which R2 ranged from 3.10 to 12.5 % 
with a mean of 8.14 %. For leaf tissue, GWAS detected 
a total of 23 loci, 6 specific to WW with an R2 range of 
4.12 to 12.57 % and a mean of 9.01 %, and 17 specific 
to WS and an R2 range of 4.14–10.43 % with a mean of 
7.98 %. For silk tissue, GWAS detected a total of 17 signif-
icant loci, 7 loci specific to WW with an R2 range of 4.34–
9.47 % and a mean of 7.15 %, and 9 specific to WS, with 
an R2 range of 4.52–10.40 % and a mean of 7.58 %. One 
locus, located on chromosome 6, was significantly associ-
ated with phaseic acid concentrations in both WW and WS 
and explained 8.10 and 8.60 % of the phenotypic variation, 
respectively. Additionally, the two-way ANOVA revealed 
that 23 of the total 63 loci showed a significant interaction 
between locus and water regime (WW & WS) for the three 
tissues (Table 1), indicating that these QTLs of metabolites 
were probably to respond to drought stress. 

Metabolic and physiological variation in hybrid pools

In the present study, we measured a total of 85 phenotypic 
variables in the hybrid pools of 139 entries (71 highly 

Category Loci number

i 494

ii 30

Total 524

DC

BA

Fig. 2  GWAS discoveries for marker sets of differing densities. a 
Venn diagram of significant loci with the two marker datasets and 
thresholds. D1 (Dataset 1) contained 1229 SNPs, D2 (Dataset 2) 
contained 156,599 SNPs; P1 and P2 represent the two significance 
thresholds for P ≤ 0.05/Ne, respectively (Ne is 952 for D1 and 67607 
for D2). b Manhattan plot of E.Dw0_WS_06. The asterisk and ver-
tical dashed line indicate one case of a significant locus that was 

identified only in Dataset 2 because there were no markers available 
within this locus in Dataset 1. c Manhattan plot of E.Pa0_WS_06. 
The asterisks and vertical dashed lines indicate one case of a sig-
nificant locus identified only in Dataset 2 because the availale mark-
ers within this locus in Dataset 1 were insufficient to reach the sig-
nificance threshold. d A classification list of newly identified loci in 
Dataset 2
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drought-tolerant and 68 intolerant hybrids) by crossing the 
panel with a common tester (CML312), involving the same 
twelve metabolic and physiological traits for leaf and ear 
(but not silk) in WW and WS at 7 days after anthesis (i.e., 
ABA, ABA-GE, Pa, Pro, Glc, Fglc,  %glc, Suc, Fsuc, Tsug, 
Slw and Dw). A considerable range of phenotypic variation 
was observed for all traits in the hybrid pools (Table S5). 
Among the 85 variables, 22 showed significant differences 
between the hybrid pools with contrasting drought toler-
ance (P < 0.05), involving all twelve metabolic and physi-
ological traits (Table S5). Thus, the hybrid pools provided 
an opportunity to correlate the metabolite-associated loci 
with drought tolerance.

From the 23 candidate drought-responsive loci chosen 
from GWAS for three tissues (see previous section), the 
set of 10 loci detected in ear and leaf tissues were selected 
to validate their effect on drought tolerance in the hybrid 
pools. The logistic regression model corroborated that all 
ten drought-responsive loci identified by the GWAS panel 
also had a significant effect on the average drought toler-
ance in the hybrids across three environments (P < 0.05). 
It is worth noting that nine of these ten loci (not includ-
ing locus 41) were simultaneously validated in all three 
environments separately, indicating the reliable effects of 
these loci on drought tolerance in hybrids (Table 2). This 

was further confirmed by the higher proportion of signifi-
cantly associated markers in these ten loci than the random 
proportion, defined as the proportion of significant random 
SNPs across the whole genome (P = 4.47E-11; Figure S5). 
Furthermore, the favorable alleles of these ten loci were 
found to be significantly enriched in the hybrids with high 
drought tolerance relative to the hybrids with low drought 
tolerance (P = 1.87E−7; Fig. 4). In total, the ten signifi-
cantly associated loci jointly explained almost 18.4 % of 
drought tolerance variation in the hybrid pools estimated 
by using a multivariate logistic regression model.

Discussion

In this study, we collected data for metabolic and physi-
ological traits across multiple tissues and environments in 
a subset of an association panel that had been studied pre-
viously (Setter et al. 2011). The new study presented here 
investigated the same set of metabolic and physiological 
traits over three environments in a hybrid population (Table 
S5) that was a subset of the most drought-tolerant and most 
drought-susceptible entries from a larger hybrid panel. This 
larger hybrid panel was previously established by test-
crossing the association panel of inbred lines with inbred 

Fig. 3  Overview of metabolite-associated loci distributed across the 
whole maize genome. Each box represents a significant locus iden-
tified by GWAS (P ≤ 1/156599) for each tissue and each drought 
condition. The colored background represents three tissues, and the 

color of the box indicates irrigation condition. Gray asterisks indicate 
the loci identified in Setter et al. (2011). Red arrows indicate the loci 
validated in hybrid pools
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line CML312 (Xue et al. 2013). The metabolic and physi-
ological data of the hybrid pools were then used to validate 
the effect of metabolite-associated loci identified in the cur-
rent GWAS study on drought tolerance in hybrids.

The previous GWAS for metabolic and physiologi-
cal traits was conducted using a set of 1229 SNPs derived 
from drought tolerance-related candidate genes (Set-
ter et al. 2011; Yan et al. 2009), and identified only seven 
SNP-trait associations underlying six candidate loci (Set-
ter et al. 2011). In the present study, 156,599 high-quality 
SNPs were obtained by integrating three genotypic data-
sets and using an efficient imputation method, leading to 
an enlarged SNP dataset. This enabled the identification of 
a considerable number of significant candidate loci poten-
tially responsible for metabolic and physiological varia-
tion, including 26 new loci significantly associated with 
metabolic and physiological traits in leaf tissue, where no 
significantly associated SNP was detected in the previous, 
smaller study (Setter et al. 2011). The six loci significantly 
associated with drought-related metabolites in Setter et al. 
(2011) were in pathways that affect ABA and carbohydrate 
metabolism in floral tissues during drought. However, the 
p values of the same SNPs in the present study were dif-
ferent, such that only one locus was still significant (at 
p ≤ 6.39E−6 or p ≤ 1/156599), and others were only mar-
ginally significant at a suggestive cutoff (p ≤ 8.14E−4 or 
p ≤ 1/1229) in the currently expanded GWAS (Table S6). 

The significance of the SNPs has decreased from the previ-
ous to the current study mainly due to the decrease in sam-
ple size from 350 in the first study to 318 in the current 
study, which would decrease statistical power to identify 
loci with minor effects and unbalanced allele frequency. 
Moreover, the PCA of the 318 inbred lines was largely dis-
tinct when estimated with 1229 SNPs compared to 50 K 
SNPs (Figure S6), which probably also influenced the 
correction of the inflated association p values due to false 
positives. As the PCA of 318 inbred lines estimated using 
whole 50 K SNPs may have ascertainment bias due to the 
background in which they were discovered (Ganal et al. 
2011), we re-estimated the PCA of the 318 lines using the 
less-biased Panzea markers extracted from the 50 K SNPs 
and found that the bias effect for PCA analysis is small in 
our association panel (Figure S7).

In the present study, GWAS results provide further 
insights into the genetic architecture of metabolic varia-
tion in maize under different water regimes (Table 1) and 
enabled the identification of 63 significant candidate loci-
trait associations. Most of these were new, and, like in 
the previous study, found to be involved in the accumula-
tion of carbohydrates and ABA-derived metabolites under 
drought stress. This accumulation has been hypothesized 
as a drought response in earlier studies (Seki et al. 2007; 
Mohammadkhani and Heidari 2008). Of particular inter-
est, GRMZM2G110153, which was also identified in the 
previous study (Setter et al. 2011), was significantly associ-
ated with phaseic acid (Pa) at 0 days after anthesis in WW 
ears. This gene encodes a MADS-box transcription factor 
in maize (MADS16 or Zmm16) that is important for the 
specification of floral organs in Arabidopsis, and is prefer-
entially expressed in young floral organs in maize and mil-
let (Wuest et al. 2012). In maize, Zmm16 may be one of the 
regulators of stamen development (Whipple et al. 2004), 
and we can hypothesize that Pa accumulation in maize ears 
(as seen in Table 2) may be linked to a hormonal role in 
floral development regulated by Zmm16 (Setter et al. 2011).

Another drought tolerance candidate gene identified in 
the current study was GRMZM2G041048, which encodes 
an F-box domain containing protein, and was significantly 
associated with Sucrose (Suc) at 7 days after anthesis in ears 
under WS condition (Table 1). Some F-box proteins, such 
as DROUGHT TOLERANCE REPRESSOR1 (DOR1) 
and Empfindlicher im Dunkelroten Licht1-Like Protein3 
(EDL3), are reported to be involved in plant response to abi-
otic stress via ABA and drought-response pathways (Zhang 
et al. 2008; Koops et al. 2011). In plants, the F-box pro-
tein more axillary growth 2 (MAX2) is an important com-
ponent of strigolactone signaling pathways and has been 
shown to regulate diverse biological processes, including 
plant architecture, photomorphogenesis, senescence, and 

Fig. 4  Distribution of favorable alleles within the two hybrid pools. 
All the favorable alleles were derived from the lead SNP for the ten 
loci that exhibited significant differences in allele frequency between 
the two hybrid groups. The bar marked with “H” means the hybrids 
with high drought tolerance, while the bar marked with “L” means 
the hybrids with low drought tolerance. The P value declared the sig-
nificance of differences between the two groups based on ANOVA
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karrikin signaling (Brewer et al. 2013). In Arabidopsis, the 
max2 mutant is strongly hypersensitive to drought stress 
compared with the wild-type Arabidopsis protein. In strigo-
lactone signaling pathways, only MAX2 genes are involved 
in plant response to drought and ABA. Mutations in other 
genes in the family, including MAX1, MAX3, and MAX4, 
produce similar phenotypes to the wild type and do not dis-
play any defects in stress responses. These findings indicate 
that MAX2 not only participates in strigolactone signaling 
pathways but also plays an important role in plant response 
to abiotic stress conditions (Bu et al. 2014).

For each maize tissue, there were large numbers of sig-
nificantly associated loci specific to the irrigation condition 
(Table 1), and more than one-third of the loci showed sig-
nificant interactions with water regime, probably reflect-
ing the genetic determinants of metabolic response to the 
drought stress. The dissection of QTLs expressed under 
different irrigation conditions is highly beneficial to under-
standing the genetic basis of drought tolerance in maize 
and to help improve elite varieties with drought tolerance in 
breeding programs.

Over the last century, maize grain yield has increased 
nearly eightfold due to selection of superior parents for 
hybrid production (Duvick 2005). Thus, it is important to 
evaluate GWAS results in hybrid backgrounds to assess 
their potential utility in modern elite (and hybrid) cultivars. 
Heterosis of productivity and stress tolerance gained from 
enhanced hybrid vigor could mask the effects of individual 
loci identified via GWAS, as the effect of each locus is usu-
ally very small. To determine if these loci can add practi-
cal value to a hybrid breeding program, 139 contrasting 
hybrids (71 tolerant and 68 intolerant to drought, Figure 
S8) were selected from the total 318 inbred lines from the 
GWAS panel that had been test-crossed with CML312 (Xue 
et al. 2013). This hybrid population containing the high or 
low drought-tolerant hybrids was analyzed using ten loci 
that had been found to be associated with drought stress in 
the inbred panel. All ten loci exhibited significant effects on 
drought tolerance in the hybrid pools (Table 2). Together, 
the ten candidate drought-response genes explain almost 
18.4 % of the drought tolerance variation and provide 
potential new targets of selection for the genetic improve-
ment of highly drought-tolerant hybrid maize. However, 
much of the phenotypic variation was left unexplained due 
to the complex architecture of drought tolerance in maize. 
This “missing heritability” (Maher 2008) may be attributed 
to genes with minor effects and epistasis, which is hard to 
detect in GWAS studies of this size.
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